
3GPP TSG-SA5 Meeting #123
S5-191418
Montreal,Canada, 21-25 January 2019

Revision of S5-19xxxx
Source:
Intel
Title:
Discussion on stage 3 protocol for performance data streaming
Document for:
Endorsement
Agenda Item:
6.3
1
Decision/action requested

The group is asked to discuss and agree on the proposal.
2
References

[1]
3GPP TS 28.550 Management and orchestration; Performance assurance.

3
Rationale

The sequence for performance data streaming is described in TS 28.550 [1], as copied below.
The stage 3 protocol(s) between the performance data streaming producer and the consumer (stream target) for step 3 to 7 have not been decided.
[image: image1.png]Measurement job control | | Measurement job control | | Performance data streaming Performance data streaming
senvice consumer senvice producer senvice producer senvice consumer (stream target)

| 1, createMeasurementjob() _| I
L cresteMeasurementjonl),, |

2. Configure measurements \

! 3. handshake

6. handshake i
fonzies

This paper discusses the options of solutions for this issue, and proposed a way forward.

4
Discussion

4.1
Observation

Given the nature of the performance data streaming as described in the TS 28.550 [1]:

· The volume of the performance data reported by streaming is expected to be small, and the Granularity period of the performance data stream needs to be configurable and is expected to be short (the minimum is down to seconds).
There are the following options for the protocols between performance data streaming producer and the consumer (stream target).

Option A: TCP
The TCP is able to transfer a continuous stream of octets in each direction between its users. The TCPs decide when to block and forward data at their own convenience.
The TCP has the following characteristics:

· connection oriented
When two processes wish to communicate, their TCP's must first establish a connection, and when their communication is complete, the connection is terminated or closed to free the resources for other uses.

· reliable

The TCP recovers the data (segment) that is damaged, lost, duplicated, or delivered out of order by the internet communication system.
· flow control
TCP provides a means for the receiver to govern the amount of data sent by the sender.
· byte oriented transmission (in a strict order)
A stream of data sent on a TCP connection is delivered in a strict order at the destination. Because of the byte-oriented nature of TCP, the application has to add its own record marking to maintain message boundaries.
· multiplexing
To allow for many processes within a single host to use TCP communication facilities simultaneously, the TCP provides a set of addresses or ports within each host. Concatenation of the network and host addresses from the internet communication layer forms a socket. A pair of sockets uniquely identifies each connection, and a socket may be simultaneously used in multiple connections.

TCP accepts data from a data stream, divides it into chunks, and adds a TCP header to create a TCP segment. The format of TCP segment header is as following.

TCP segment header
[image: image2.png]Bit# | 0 7|8 154 16 23 | 24 81
0 Source Port Destination Port
32 Sequence Number
64 Acknowledgment Number
96 |Data Offset| Res Flags Window Size
128 Header and Data Checksum Urgent Pointer
160...

Options

Option B: UDP

The UDP (User Datagram Protocol) provides a datagram mode of packet-switched computer communication in the environment of an IP connected networks.

The UDP has the following characteristics:

· minimal protocol mechanism;

· transaction oriented

The delivery and duplicate protection are not guaranteed.
The UDP user datagram header contains the following information.

UDP user datagram header
[image: image3.png]Bit # 718 15 | 16 23 | 24 31
0 Source Port Destination Port
32 Length Header and Data Checksum

Option C: SCTP (Stream Control Transmission Protocol)

The SCTP is defined in RFC 4960 [2], and is designed to transport Public Switched Telephone Network (PSTN) signalling messages over IP networks, but is capable of broader applications. SCTP is a reliable transport protocol operating on top of a connectionless packet network such as IP.
The SCTP has the following characteristics:

· connection oriented

The SCTP performs the services within the context of an association between two SCTP endpoints.
· multi-homing

An SCTP association has the multi-homing capability to support multiple IP paths to its peer endpoint. The benefit of multi-homing associations is that it makes the association more fault-tolerant against physical network failures and other issues on the networks.
· reliable

The SCTP endpoint MUST always acknowledge the reception of each valid DATA chunk when the DATA chunk received is inside its receive window.
· message oriented transmission

SCTP can provide strictly ordered delivery of messages within a stream while logically isolating data from different streams.
The SCTP packet format is as following:
 SCTP packet format
	bit 0-7
	bit 8-15
	bit 16-23
	bit 24-31
	

	Source Port Number
	Destination Port Number
	SCTP common header

	Verification Tag
	

	Checksum
	

	Type
	Flag
	Length
	Chunk #1 (Control or Data)

	Chunk value
	

	……
	……

	Type = 0
	Reserved
	U
	B
	E
	Length
	Chunk #n Data

	TSN
	

	Stream Identifier S
	Stream Sequence Number n
	

	Payload Protocol Identifier
	

	User Data (sequence n of Stream S)

	

	……
	……

Option D: HTTP (RESTful API)

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed, collaborative, hypermedia information systems. HTTP communication usually runs on tops of connection-oriented protocols, most commonly the TCP but can be also SCTP.

REST standards for REpresentational State Transfer, and it is architectural style for distributed hypermedia systems. The key abstraction of information in REST is resource. Any information that can be named can be a resource. The resource are the presented between client and server.
The APIs that are conforming to the REST architecture style are RESTful APIs. The RESTful APIs are based on HTTP methods (GET, PUT, POST, DELETE, PATCH, etc.).
The principles of REST are:
· client – server based
By separating the user interface concerns from the data storage concerns, it improves the portability of the user interface across multiple platforms and improves scalability by simplifying the server components.

· stateless
The client–server communication is constrained by no client context being stored on the server. Each request from any client contains all the information necessary to service the request, and session state is held in the client.
· Catchability
As on the World Wide Web, clients and intermediaries can cache responses. Well-managed caching partially or completely eliminates some client–server interactions, further improving scalability and performance.
· Layered system
A client cannot ordinarily tell whether it is connected directly to the end server, or to an intermediary along the way. Intermediary servers can improve system scalability by enabling load balancing and by providing shared caches. They can also enforce security policies.
· Code on demand (optional)

Servers can temporarily extend or customize the functionality of a client by transferring executable code. For example, compiled components such as Java applets, and client-side scripts such as JavaScript.
· Uniform interface
The uniform interface constraint is fundamental to the design of any RESTful system. It simplifies and decouples the architecture, which enables each part to evolve independently. The four constraints for this uniform interface are. REST API is defined by four interface constraints: identification of resources; manipulation of resources through representations; self-descriptive messages; and hypermedia as the engine of application state.
The HTTP POST method can be used to send the streamed performance data to the consumer (REST server).
The format of HTTP message (request and response) is:
[image: image4.png]Start line

Header lines

Blank line

Entity body

Request / Response

header field name:

sp

value

cr

If

header field name:

sp

value

cr

If

o | If

· Start-line

Description of the requests (for request), or the status of whether successful or failed (for response);
· Header lines (zero or more)

An optional set of HTTP headers followed by CRLF, describing the request, response or message body included in the message.
· An blank line (i.e., a line with nothing preceding the CRLF)

Indication of the end of the header fields.
· Entity body (optional but required for performance data streaming)

Carrying the actual HTTP data for the request or the response.
4.2
Analysis
The Performance Data Stream Unit includes the following content (see Table C.1-1 of 28.550 [1]).
	Performance Data Stream Unit Content
	Description

	streamId
	The streamId of the performance data stream.

	granularityPeriodEndTime
	Time stamp referring to the end of the granularity period.

	measResults
	This parameter contains the sequence of result values for the observed measurement types.

The "measResults" sequence shall have the same number of elements, which follow the same order as the measurement types presented in “measTypes” for the subject stream in the output parameter streamInfoList of the createMeasurementJob operation (see 6.1.1.3 of 28.550[1]).

4.2.1
Data sequence
The order of the “result value” in the “measResults” field has significance, because each “result value” is corresponding to a specific “measurement type” by following the same order.
So, for one performance data stream unit, the sequence of the data arriving to the consumer (stream target) is important, otherwise the consumer may mismatch the measurement value to another “measurement type”.
From this sense, the protocol for transmitting the performance data stream unit needs to be able to ensure the sequence that the data arrive to the consumer (stream target). Therefore, UDP is not a good option for transmitting the Performance Data Stream Units.
4.2.2
Data representation
The streamed performance data are GP based, and normally are transmitted during the whole lifecycle of the measured entities (e.g., NFs). The historical performance data reflects the things happened in the past, but not the status quo. So the performance data is not necessarily to be represented as the resource identified by a URI.
In addition, the RESTful API, based on HTTP creates more overhead beyond the transport layer.

So, the RESTful API is not a good option for transmitting the Performance Data Stream Units.
4.2.3
Technology maturity
Based on the analysis above, technically TCP and SCTP are both feasible candidates for transmitting the Performance Data Stream Units.
Considering the maturity of both technologies, the TCP is more widely used and considered more mature.
So, the TCP is the more preferable choice.
5
Proposal
It is proposed to use TCP as the transport protocol for transmitting the Performance Data Stream Units.
